Lattice animals on a staircase andFibonacci numbers

نویسنده

  • L Turban
چکیده

Abstract. We study the statistics of column-convex lattice animals resulting from the stacking of squares on a single or double staircase. We obtain exact expressions for the number of animals with a given length and area, their mean length and their mean height. These objects are closely related to Fibonacci numbers. On a single staircase, the total number of animals with area k is given by the Fibonacci number Fk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area Limit Laws for Symmetry Classes of Staircase Polygons

We derive area limit laws for the various symmetry classes of staircase polygons on the square lattice, in a uniform ensemble where, for fixed perimeter, each polygon occurs with the same probability. This complements a previous study by Leroux and Rassart, where explicit expressions for the area and perimeter generating functions of these classes have been derived. MSC numbers: 82B41, 05A16, 3...

متن کامل

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Polygonal polyominoes on the square lattice

We study a proper subset of polyominoes, called polygonal polyominoes, which are defined to be self-avoiding polygons containing any number of holes, each of which is a self-avoiding polygon. The staircase polygon subset, with staircase holes, is also discussed. The internal holes have no common vertices with each other, nor any common vertices with the surrounding polygon. There are no ‘holes-...

متن کامل

Staircase tilings and k-Catalan structures

Many interesting combinatorial objects are enumerated by the k-Catalan numbers, one possible generalization of the Catalan numbers. We will present a new combinatorial object that is enumerated by the k-Catalan numbers, staircase tilings. We give a bijection between staircase tilings and k-good paths, and between k-good paths and k-ary trees. In addition, we enumerate k-ary paths according to D...

متن کامل

On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs

Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999